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FORCE-TEST INVESTIGATION OF _{E STABILITY AND CONTROL

CHARACTERISTICS OF A I/4-SCALE MODEL OF A TILT-WING

VERTICAL-TAKE-OFF-AND-LANDING AIRCRAFT

By William A. Newsom, Jr., and Louis P. Tosti

SUMMARY

A wind-tunnel investigation has been made to determine the aerody-

namic characteristics of a i/4-scale model of a tilt-wing vertical-take-

off-and-landing aircraft. The model had two 3-blade single-rotation

propellers with hinged (flapping) blades mounted on the wing, which

could be tilted from an incidence of 4° for forward flight to 86 ° for

hovering flight.

The investigation included measurements of both the longitudinal

and lateral stability and control characteristics in both the normal

forward flight and the transition ranges. Tests in the forward-flight

condition were made for several values of thrust coefficient_ and tests

in the transition condition were made at several values of wing incidence

with the power varied to cover a range of flight conditions from forward-

acceleration (or climb) conditions to deceleration (or descent) conditions

The control effectiveness of the all-movable horizontal tail_ the ailerons

and the differential propeller pitch control was also determined. The

data are presented without analysis.

INTRODUCTION

An investigation has been made of the stability and control charac-

teristics of a i/4-scale model of the Vertol 76 vertical-take-off-and-

landing (VTOL) aircraft. The results of the free-flight tests of the

model are reported in reference i_ and the results of the force tests

are presented in the present paper.



The force tests included measurementof both longitudinal and lateral
stability characteristics for the transition and normal-forward-flight
conditions. The tests in the forward-flight condition were madeat wing
incidences of 4° and 14° for thrust coefficients from 0 through 0.5. The
tests in transition flight were madefor wing incidences from 20° through
80° with various power settings to represent conditions of steady level
flight, forward acceleration (or climb), and deceleration (or descent).
The control effectiveness of the all-movable horizontal tail was deter-
mined for both the forward-flight and transition conditions, and the
effectiveness of the ailerons and the differential propeller pitch con-
trol was determined for the transition conditions.

SYMBOLS

The forces and momentsare based on the stability-axis system, which
is an orthogonal system with the origin at the airplane center of gravity.
The Z axis is in the plane of symmetry and perpendicular to the relative
wind, the X-axis is in the plane of symmetry and perpendicular to the
Z-axis, and the Y-axis is perpendicular to the plane of symmetry.

FL lift, lb

FD drag, lb

My pitching moment, ft-lb

Fy side force, ib

MX rolling moment, ft-lb

MZ yawing moment, ft-lb

CL llft coefficient, FL
qS

CD drag coefficient, FD
qS

C m pitching-moment coefficient, My
qSc

Cy

C_

side-force coefficient, F__y
qS

rolling-moment coefficient,
qSb
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Cn yawing-moment coefficient, MZ
qSb

wing span, ft
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drove the propellers through shafting and right angle gear boxes. The
speed of the motor was Changedto vary the thrust of the propellers.
The propeller blade angle was set at 12° except during the tests to
determine the lateral control effectiveness of differential pitch of the
two propellers.

The wing was pivoted at the 37-percent mean-aerodynamic-chord sta-
tion and could be rotated to provide incidence of 4° to 86° . The model
had an all-movable horizontal tall and conventional aileron and rudder
controls for forward flight. Roll control in hovering flight was pro-
vided by varying the pitch of the propellers differentially. For pitch
and yaw control in hovering flight, the model had Jet reaction controls
in the rear of the fuselage instead of the recessed tail "fans" in the
horizontal and vertical tails which are used on the airplane, and th_
tail fans were not represented in the model tests.

TESTS

The tests were made in the Langley full-scale tunnel with the model
support strut mounted near the lower edge of the entrance cone and about
5 feet above a ground board. Electric strain-gage balances were used to
measure the forces and momentson the model and an electric tachometer
was used to set the various model propeller speeds needed in the tests.
Although during someof the tests, another model was left in the tunnel
approximately 15 feet behind and slightly to the left of the present
model, no corrections for flow angularity or blockage due to its presence
have been applied to the data, since the blockage and interference effects
were believed to be very small.

For the forward-flight condition, tests were madeto determine the
longitudinal stability and control characteristics and the lateral sta-
bility characteristics for thrust coefficients from 0 to a value of 0.5
which represented full power at a lift coefficient of 1.0. These tests
were madewith a wing incidence of 14° as well as with the design inci-
dence of 4°. The longitudinal stability tests covered a range of angles
of attack from -5° to 20° and tail incidences from 0° to -15°. The
lateral stability tests covered a range of sideslip from -20° to 20° and
angles of attack from 0° to 20°.

For the investigation of the transition-flight condition, tests were
made for a range of power settings from that required for a forward
acceleration of i/2g or a rate of climb of 500 feet per minute for the
full-scale aircraft (whichever was the greater) to that required for a
deceleration of i/2g or a rate of descent of 500 feet per minute (which-
ever was the less). For tests at wing incidences of 20° , 40°, and 60°_
the forward acceleration or deceleration proved to be the determining
condition and the tests were madewith power settings which3 with the
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fuselage at zero angle of attack, gave forward accelerations of i/2g

and I/4g, zero acceleration, and decelerations of i/2g and i/4g. With

these power settings, the angle of attack was varied for longitudinal

stability and control tests from -15 ° to 20 ° with the stabilizer off and

with the stabilizer set at various angles of incidence from 0° to 15 ° .

Lateral stability and control tests at wing incidences of 20 °, 40 °,

and 60 ° were made with power settings which gave forward accelerations

of i/4g, O, and -i/4g with the fuselage at angles of attack of 0° and i0 °.

These tests covered a range of sideslip angles from 20 ° to _200, deflec-

tions of the right aileron from 30 ° to -30 ° , and total differential pro-

peller pitch from 0° to 6° (for the condition of zero acceleration at

= 0° only).

For a wing incidence of 80 ° , the condition for rate of climb of.

500 feet per minute required the greater power variation, and the tests

were consequently set up to represent the climb and descent conditions.

Tests were made with the power settings for steady level flight with the

fuselage at 0 ° angle of attack, for a 45 ° climb or descent with the fuse-

lage level (angle of attack, -45 ° or 45 °, respectively), and for a

26._ ° climb or descent with the fuselage level. For the longitudinal

stability and control tests, the fuselage angle of attack was varied

approximately ±I0 ° from these conditions with the horizontal tail off

and with the tail on at angles of incidence of 0° and 15 °. Tests were

made at sideslip of 20° to -20 ° , and aileron-effectiveness tests were

made with the fuselage level for a range of deflection of the right

aileron from 30° to -30 ° for the level-flight, the 26.5 ° climb, and the

26._ ° descent power conditions. The effectiveness of the differential

propeller pitch control was determined only for the level flight condition.

The tests at wing incidences of 4° and 14 ° were made at an airspeed

of about 29 knots, which gave an effective Reynolds number based on the

wing chord and free-stream velocity of about 400,000. For the tests at

higher angles of wing incidence it was necessary to reduce the tunnel

airspeed below 29 knots to avoid exceeding the model motor limitations.

The Reynolds number based on the wing chord and slipstream velocities

varied between 200,000 and 790;000.

PRESENTATION OF RESULTS

The results of the force test investigation to determine the aero-

dynamic characteristics of a i/4-scale model of the Vertol 76 VTOL air-

craft are presented in figures 2 to 14. The data for the normal forward

flight tests (iw = 4° and 14 °) are presented in coefficient form, but

since the coefficients approach infinity and become essentially meaning-

less as the velocity approaches zero, the data for the transition flight

tests (iw = 20 ° , 40 ° , 60 ° , and 80 ° ) have been scaled up to the weight



and center-of-gravlty locations of the full-scale airplane listed in
table II. It should be noted, however, that although the data have been
scaled up to correspond to the weight values of table II for tests made
at power settings that gave zero net drag and acceleration or deceleration
of 1/4g and 1/2g at _ = 0°, the data can be interpolated and rescaled in
terms of other conditions such as climb or glide or trim at other angles
of attack. If the data are rescaled, all forces and momentsare simply
multiplied by the factor required to make the lift equal to the desired
value for the desired condition, and the velocity is multiplied by the
square root of this factor. All tests were madewith a meanblade angle
of 12o instead of a blade angle adjusted to the proper value for each
condition, since the variation of rotor speed and blade angle for the
airplane was not known. Instead of adjusting the blade angle, the pro-
peller speed was adjusted to give the proper thrust and, consequently,
the proper slipstream velocity and position for each test condition.

All the data of figures 2 and 3 were obtained at the normal forward
flight conditions (i w = 4° and 14°, Tc = 03 0.25, and 0.50). Figure 2
shows the variation of lift coefficient, drag coefficient, and pitching-
momentcoefficient with angle of attack_ and figure 3 showsthe variation
of rolling-moment coefficient, yawing-momentcoefficient, and side-force
coefficient with sideslip angle. During each test, horlzontal-tail
deflections of 0°, -10°3 and -15° were used, and data were also obtained
with the horizontal tail off.

The data obtained in the tests through the transition flight range
are presented in figures 4 to ll. In figures 4 to 8 are plots presenting
the variation of lift, drag, and pitching momentwith angle of attack at
several horizontal tail deflections, the separate figures representing
the different flight conditions of zero acceleration and of both accelera-
tion and deceleration of 1/4g and 1/2g. Figure 9 shows data obtained for
the variation of lift, drag, and pitching momentwith angle of attack for
the climbing and descending flight conditions with 80° wing incidence.
For figure 9(a) the model was set at _ = -26.5 ° and the 26.5° climb
(or forward acceleration of 1/2g) condition was established. The angle
of attack was then varied up and downfrom -26._ ° for the tests. The
data of figure 9(b) represent a 45° climb (or acceleration of 1 g) and
the test conditions were set up in a manner similar to those discussed
for figure 9(a). The condition for a 26.5° descent angle was represented
by establishing 1/2g of deceleration at _ = 26.5° and a 45° descent
angle was represented by a deceleration of 1 g at _ = 45° (figs. 9(c)
and 9(d)). Figure lO showsthe variation of rolling moment, yawing
moment, and side force with sideslip angle for wing incidences of 20°_
40° , 60° , and 80° . The tests were for the conditions of zero accelera-
tion and for accelerating or decelerating flight of 1/4g at both _ = 0o
and _ = lO°. The lateral stability data for a wing incidence of 80°
and a 45° climb (acceleration of 1 g) are presented in figure II. The
results of the tests of the lateral control effectiveness through the



transition flight range are presented in figures 12 to 14. In figures 12
and 13, the effect of deflection of the right aileron on the rolling
moment,yawing moment,and side force is presented, and figure 14 shows
the effect of differential propeller pitch.

CONCLUDINGPd_IARKS

Data have been presented for a i/4-scale model of a vertical-take-
off-and-landing aircraft with a wing capable of being tilted from 4°
incidence for forward flight to 86° incidence for hovering flight.
Included are longitudinal and lateral stability data covering a range
of conditions simulating zero forward acceleration and accelerating and
decelerating flight in level, climbing, and descending flight.

Langley Research Center,
National Aeronautics and Space Administration_

Langley Field, Va., October 2, 1958.
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TABLE I .- SCALED-UP GEOMETRIC CHARACTERISTICS OF THE MODEL

Propellers (5 blades each rotor):

Diameter, ft ........................ 9.33

Solidity .......................... 0.239

Chord, ft ......................... 1.0

Wing:

Pivot, percent chord .................... 37

Sweepback (leading edge), deg ............... 0

Airfoil section ..................... NACA 4415

Aspect ratio ........................ 5.42

Chord, ft ......................... 4.75

Taper ratio ......................... 1.0

Area 3 sq ft ......................... 118.2

Span, ft ......................... 24.88

Dihedral angle, deg .................... 0

Ailerons (each):

Chord, ft ........................ 1.22

Span, ft ......... ................ 4.83

Hinge line, percent chord ................ 74.1

Vertical Tail:

Sweepback (leading edge), deg ................ 0

Airfoil section ..................... NACA 0012

Aspect ratio ........................ 1.25
Chord, ft ......................... 4.0

Taper ratio ........................ 1.0

Area, sq ft ........................ 20

Span, ft .......................... 5.0

Rudder (hinge line perpendicular to fuselage center line):

Chord, ft ........................ 1.25

Span, ft ......................... 5.0

Horizontal Tail:

Sweepback (leading edge), deg ............... 0

Airfoil section ..................... NACA 0012

Aspect ratio ........................ 3.10

Chord, ft ......................... 3.0

Center section chord, ft .................. 4.21

Area (including center body), sq ft ............ 29.70

Span, ft .......................... 9.90

Dihedral .......................... 0
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TABLE II.- WEIGHT OF THE FULL-SCALE AIRCRAFT WITH THE CENTER-

OF-GRAVITY LOCATIONS FOR VARIOUS WING INCIDENCE ANGLES

Weight, 3,139 lb]

deg

4
14

2O

40
6o
8O

Center-of-gravity position

(from wing pivot), ft

Horizontal

(forward)

0.490
.477
.460
.394
.297

.180

Vertical

(below)

i. 310

i.25o
I.228
1.12O

1.o57
1.023
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